PRIMES IN ARITHMETIC PROGRESSIONS: FIXED
MODULUS
COURSE NOTES, 2015

In this section, we survey the theory of primes in arithmetic progressions
p=a modgq, p <z, with the modulus ¢ being fixed and = — oo.

1. ELEMENTARY CASES OF DIRICHLET’S THEOREM

Dirichlet’s theorem says that if gcd(a,q) = 1 then there are infinitely
many primes in the progression p = @ modgq. The proof is the subject of
a separate course, though some in the class have seen it (possibly in Fy[t]).
Instead, we explain some elementary examples.

1.1. p =3 mod4. Assume there are only finitely many primes p = 3 mod 4.
Enumerate them as p;1 =3,p2 =7,...,pa. Let

Then N > 1, 2{ N, and p; { N, hence all prime factors of N are congru-
ent to 1 mod4: N = q1...¢r, ¢ = 1 mod4. But then N = 1 mod4,
contradiction.

1.2. p = 1 mod4. Assume that there are only finitely many primes p =
1 mod4. Enumerate them as py = 5,p2 = 13,...,pp. Let

N = (2p1...pu)* +1

Then N >1,2¢ N, p;j { N and hence all prime factors of N are =3 mod 4.
Since N > 1. there is at least one such prime p | N. Then

(2p1...pp)? = —1 modp

But since p = 3 mod4, we know that —1 # [0 modp hence we have a
contradiction.

1.3. p=1 modgq, ¢ > 2 prime. We take an odd prime ¢ and show there

are infinitely many primes p = 1 mod g. Otherwise, list them as p1,...,pn
(possibly there are none).
Let
9 -1

¢q($):1+x+"'+$q_1: x_l

be the cyclotomic polynomial. Let
M
A=q-1]ps
j=1
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Al -1

N:=0,(A)=1+A+. -4+ AT =
qo(A) +A+---+ 11

Then N >1,q¢{N, pj{N.
Since N > 1, there is some prime p dividing N. Then

A?=1 modp

and hence either A = 1 modp or ord,(A) = ¢. In the latter case, this
implies that ¢ = ord,(A) | p — 1 so that p = 1 mod ¢, contradiction.
We rule out A =1 mod p, since otherwise we find

N=14+A+ -+ A7 =14 ... 1=¢g modp

and since p | N, also N = 0 mod p, hence ¢ = 0 mod p. Since both p and ¢
are prime, this forces p = q. But we saw ¢ { N, contradiction.

2. THE PNT FOR ARITHMETIC PROGRESSIONS

Let ged(a,q) =1, and set

m(z;q,a) == #{p <z :p=a modq}

0(z;q,a) = > logp

p<z
p=a mod q

(the sum over primes),

Y(wig,a) = Y An)
n<x
n=a mod ¢
The prime number theorem for arithmetic progressions states that if
ged(a, q) =1, then as  — oo (g fixed),

7(:4,a) = —— Li(z) + O(weVPE7)

¢(q)
x e
U(z;q,a) = —— + O(zecVIos?
(#50,a) ¢(q) ( :
Applying summation by parts gives
log p 1
1 = ——logz+ O(1
& > P g osr oW
psT
p=a mod q

Exercise: prove this.
Recall that we take g fixed, and x — oo. Later on we will come to the
more interesting and important case of varying modulus.
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2.1. Bounding prime values of n? + 1. It is an old conjecture that there
are infinitely many primes of the form n? + 1. In this section we shall give
an upper bound for their number

Theorem 2.1. The number of n < x so that n®+ 1 is prime is < z/log .
We wish to use the Selberg upper bound sieve, with the sequence
A={n*+1:n<z}

If a prime p divides an integer of the form n? + 1, then p # 3 mod 4. Hence
we take as the set of primes

P={p:p+#3 mod4}

Piz)=]]r

p<z

and set

If d | P(z), then as we have already seen elsewhere,
d
pdai=#n <zt +1) = Doy o)

where p(d) = #{c modd:c? +1 =0 modd}.
Setting
S(A,P,2) :=#{a € A: ged(a, P(2)) = 1}
then clearly #S(A, P, z) gives an upper bound for the primes p > z of the
form n? + 1.
By the Selberg upper bound sieve,

#S(A,P,2) < —— + R(2)

S(z)
where
R(z)= > p(ldi,da])
dy,d2<z
d|P(z)
and

where for d | P(z), we set f(d) = d/p(d).
Theorem 2.2. Let p(p) be as above. Suppose in addition that

w(p)lo
Z (p)logp

=klogz+ O(1),
p

p<z

for some kK > 0. Then
S(z) < (log 2)".



4 PRIMES IN ARITHMETIC PROGRESSIONS: FIXED MODULUS

In our case, k = 1: Indeed, if p =1 mod4 then p(p) = 2 while p(p) =0
for p = 3 mod 4. Hence

Zp logp Z 210gp+0(1)

p<z p<z p
p=1 mod 4
and since 1 )
o)
Z &P =——logz+ O(1)
= pr 9
p=a mod q

whenever ged(a, q) = 1, takeing g = 4, a = 1 gives

1 1
Z O;;p 2logz+0( )

p<z
p=1 mod4

Thus we find that S(z) < log z.
As for the remainder term R(z), we use for dy, d2 | P(z), so are squarefree,
that

p(ldr.do]) = J[ p(p) < pldr) - p(da)

pl[d1,d2]
and hence N
R < >0 pldp(da) = (Y o))
dy,d2<z d<z
di,da|P(z) d|lP(z)
Now for d squarefree,
=[Irtp) <]]2="(a)
pld pld

(7 is the divisor function), and therefgore

> pld) <D 7(d) ~ zlogz

d<z d<z
d|P(z)

Thus we find
R(z) < #*(log 2)*
Altogether we obtain

S(AP,2) < —— + 2%(log 2)? <

log z log x

on taking say z = 21/3.



